COURSEWORK
Words: 1925
Pages: 7
120
120
Download2015
BIO-M209
DATA HANDLING LINKED TO MOLECULAR MEDICINE
Name of the Student
Professor’s Name
2015
BIO-M209
DATA HANDLING LINKED TO MOLECULAR MEDICINE
Background
Bioinformatics is a specialty which helps to evaluate various proteins and their probable interactions based on the sequence of their nucleic acids or genes. It further helps to identify different protein families and their identical counterparts with their evolutionary origin. The
present article involves a bioinformatics approach in revealing the characteristics of a protein from the constituent cDNA sequence. The present article evaluated the various research questions with respect to “Sequence 10” (as selected and shown in Appendix 1). The sequence represented a complementary DNA sequence obtained from a messenger RNA. Complementary DNA sequences are derived from mRNA of a target gene. Such approach helps in creating the gene segment of interest which is destined to form a functional protein.
Wait! COURSEWORK paper is just an example!
Hence, cDNA libraries are created for obtaining amplification of such segments through either plasmid based cloning or PCR-RTPCR based methods.
Identity & Characterization of the cDNA sequence
The sequence identification was done through the Uniprot software. BLAST program was run on the cDNA sequence provided for the analysis (Aluru, 2006). The sequence was copy pasted to the BLAST window (in the Uniprot webpage) and the run button was pressed to evaluate the sequence (Baxevanis & Ouellette, 2005). The sequence cDNA FLJ55514 (as per Uniprot entry B7Z2I3), was found to be identical to Epidermal growth factor receptor (EC 2.7.10.1) (Homo sapiens) gene (shown in appendix). The subclass to which the sequence belonged was EGFR V1. The identity features are provided in table 1 below.
Features Values
E-value 0.0
Score 2212
Identity 99.8%
Positives 99.8%
Query Length 1262 base pairs
Total Match length 1157 base pairs
Table 1: Represents the identity features of the sequence cDNA FLJ55514 (as per Uniprot entry B7Z2I3), to the Epidermal growth factor receptor (EC 2.7.10.1) (Homo sapiens) gene
The identity of the sequence was 99.8% with a total match length of base pairs. Hence the corresponding gene of cDNA FLJ55514 is probably the epidermal growth factor receptor gene (EGFR) and the species was Homo sapiens. The sequence indicated that there was a plethora of related gene families especially the tyrosine kinase receptor domain of various species (which included humans, mouse, rats, Gorilla and other organisms) (Appendix).
Further the gene families reflected that all such sequences were linked to growth of the cell or the organisms by prevention of probably apoptotic mechanisms and stimulating growth of cells. Prevention of apoptosis helps in cell survival and tyrosine kinase signalling helps in activation of STAT factors (signal transducers and activators of transcription factors). The tyrosine kinase domain phosphorylates STAT which moves to nucleus and aids in transcription of various genes related to growth of the cells. The EGF also reacts with EGFR V1 to prevent caspase mediated apoptosis and thereby inducing growth and prevention of programmed cell death (apoptosis) and may involve STAT pathway aiding in cell growth through progression of cell cycle.
Evolutionary Trend
The homologies of cDNA FLJ55514 are matched with different proteins (as indicated in appendix). The percentage identities are also provided in the Appendix. The evolutionary relationship and cladogram analysis was done from Multiple sequence alignment technique by selecting 50 individual homologues from the BLAST outputs (refer appendix) (Hall, 2010). Multiple sequence alignment was conducted to find out the evolutionary tree (refer attachment appendix). The cladogram indicated the genesis of the following protein from the primitive primate species. The homologues are evident across various animal species and their origin refers to receptor protein tyrosine kinases. These proteins are evident in the viral species, feline species and mammals including humans and rats.
.
Description of Genetic Locus and Gene Organization
The name of the gene is epidermal growth factor receptor (EGFR V1) gene. The cytogenetic location of the gene is 7p12. This means it is located on chromosome 7 in Homo sapiens at the short arm and at position 12. The details are shown in the following figure 1 (Ref: Homo sapiens annotation release 107, GRCh38.p2, NCBI). The average base pairs are 55019032 to 55207308. The surrounding genes are also specified in the diagram below.
Fig 1: Exhibits the location of 7p12 in relation to neighboring chromosomes (Accessed from (Ref: Homo sapiens annotation release 107, GRCh38.p2, NCBI)
Exons represent the coding regions of an mRNA while the introns represent the non-coding regions of an mRNA (Hindoff, 2009). The protein is represented below in Figure 2. The red portions indicate the exons in the detailed diagram in various reading frames. The multiple transcripts can be generated through splicing mechanisms. This means the exons may join one another randomly and in that process the introns are eliminated from the hnRNA to from a specific mRNA (Moody, 2004). Hence, alternative splicing may exists in the hnRNA. The other probable sequences are provided in Appendix.
5’3′ Frame 1S G A F G T V Y K G L Stop I P E G E K V K I P V A I K E L R E A T S P K A N K E I L D E A Y V Met A S V D N P H V C R L L G I C L T S T V Q L I T Q L Met P F G C L L D Y V R E H K D N I G S Q Y L L N W C V Q I A K G Met N Y L E D R R L V H R D L A A R N V L V K T P Q H V K I T D F G L A K L L G A E E K E Y H A E G G K V P I K W Met A L E S I L H R I Y T H Q S D V W S Y G V T V W E L Met T F G S K P Y D G I P A S E I S S I L E K G E R L P Q P P I C T I D V Y Met I Met V K C W Met I D A D S R P K F R E L I I E F S K Met A R D P Q R Y L V I Q G D E R Met H L P S P T D S N F Y R A L Met D E E D Met D D V V D A D E Y L I P Q Q G F F S S P S T S R T P L L S S L S A T S N N S T V A C I D R N G L Q S C P I K E D S F L Q R Y S S D P T G A L T E D S I D D T F L P V P E Y I N Q S V P K R P A G S V Q N P V Y H N Q P L N P A P S R D P H Y Q D P H S T A V G N P E Y L
Figure 2: Represents the exon sequences (marked in red) and the intron sequences (unmarked) of a reading frame of the cDNA segment in the 5’-3’ direction.
Features of the mRNA and the Protein derived from the cDNA
The mRNA derived from the cDNA exhibits unique features (Fig3). The Thymine bases of the cDNA are replaced by Uracil bases. Multiple transcripts may be obtained based on the basis of alternate splicing as depicted in the exon/intron table above. Presence of multiple transcripts as evidenced in appendix may indicate abortive initiation of translations with various AUG signals for Methionine. The multiple transcripts may be generated through 8-9 cycles of abortion or dislodging of translated product from the mRNA-ribosome complex of EGFR V1. Alternative splicing is a method where each individual exon may combine separately with different exons in a random manner to generate various isoforms of the same protein with different functions. Since the EGFR has many isoforms (V, erb2) of the same protein with different functions, therefore alternative splicing does exist in the hnRNA. This means one exon may skip joining with an adjacent exon and react with the hydroxyl group of a distant exon in the hnRNA. Alternative splicing is evident in the exons marked in red which is the basis of various isoforms of the same protein.
The special features of the mRNA sequence
The special features of the mRNA sequence indicate various inverted repeats in the regions of 75-92, 93-211,372-433(details in appendix). The mutations are evident in the segments corresponding to the DNA at 274 to 331, at residue 429, in between 551-606. Such information was derived from multiple sequence alignment with FASTA in the Uniprot window. The detailed MSA was hit for mutations and the information was thus obtained. Multiple AUG repeats indicate multiple start sites either for abortive initiation of transcription or scanning to translate the specific exon sequence.The other special feature of the mRNA is that it contains repeated Uracil bases which aids in quick release of mRNA from the DNA template.
16112118124130136142148154160166172178184190196110211081114112011261 AGGCCACGCA AGCCGUGCCA CAUAUUCCCU GAGACUUAGG GUCUUCCACU CUUUCAAUUU UAAGGGCAGC GAUAGUUCCU UAAUUCUCUU CGUUGUAGAG GCUUUCGGUU GUUCCUUUAG GAGCUACUUC GGAUGCACUA CCGGUCGCAC CUGUUGGGGG UGCACACGGC GGACGACCCG UAGACGGAGU GGAGGUGGCA CGUCGAGUAG UGCGUCGAGU ACGGGAAGCC GACGGAGGAC CUGAUACAGG CCCUUGUGUU UCUGUUAUAA CCGAGGGUCA UGGACGAGUU GACCACACAC GUCUAGCGUU UCCCGUACUU GAUGAACCUC CUGGCAGCGA ACCACGUGGC GCUGGACCGU CGGUCCUUGC AUGACCACUU UUGUGGCGUC GUACAGUUCU AGUGUCUAAA ACCCGACCGG UUUGACGACC CACGCCUUCU CUUUCUUAUG GUACGUCUUC CUCCGUUUCA CGGAUAGUUC ACCUACCGUA ACCUUAGUUA AAAUGUGUCU UAGAUAUGGG UGGUCUCACU ACAGACCUCG AUGCCCCACU GACAAACCCU CAACUACUGG AAACCUAGGU UCGGUAUACU GCCUUAGGGA CGGUCGCUCU AGAGGAGGUA GGACCUCUUU CCUCUUGCGG AGGGAGUCGG UGGGUAUACA UGGUAGCUAC AGAUGUACUA GUACCAGUUC ACGACCUACU AUCUGCGUCU AUCAGCGGGU UUCAAGGCAC UCAACUAGUA GCUUAAGAGG UUUUACCGGG CUCUGGGGGU CGCGAUGGAA CAGUAAGUCC CCCUACUUUC UUACGUAAAC GGUUCAGGAU GUCUGAGGUU GAAGAUGGCA CGGGACUACC UACUUCUUCU GUACCUGCUG CACCACCUAC GGCUGCUCAU GGAGUAGGGU GUCGUCCCGA AGAAGUCGUC GGGGAGGUGC AGUGCCUGAG GGGAGGACUC GAGAGACUCA CGUUGGUCGU UGUUAAGGUG GCACCGAACG UAACUAUCUU UACCCGACGU UUCGACAGGG UAGUUCCUUC UGUCGAAGAA CGUCGCUAUG UCGAGUCUGG GGUGUCCGCG GAACUGACUC CUGUCGUAUC UGCUGUGGAA GGAGGGUCAC GGACUUAUGU AUUUGGUCAG GCAAGGGUUU UCCGGGCGAC CGAGACACGU CUUAGGACAG AUAGUGUUAG UCGGAGACUU GGGGCGCGGG UCGUCUCUGG GUGUGAUGGU CCUGGGGGUG UCGUGACGUC ACCCGUUGGG GCUCAUAGAG UU
Figure 3: The mRNA obtained from the provided cDNA template is represented in the above figure.
Protein Structure and Function Analysis
The encoded protein is most probably the epidermal growth factor receptor from the following from the gene or mRNA (Herbst, 2004). The protein spans the cell membrane of a cell and allows binding to extracellular growth factors (Fallon et al, 1984). These growth factors cause tyrosine kinase activity which prevents the activity of the proapoptotic proteins like BCLX2 and Bax. This causes inhibition of apaptosome formation. Since, apaptosomes are not formed; procaspase 9 is not converted to caspase 9. Therefore, caspase 9 is not available for conversion of procaspase 3 to caspase 3. As caspase 3 s not formed, endonuclease will not be stimulated and the DNA in the cell will not be degraded. Hence, the cell will survive and grow due to prevention of programmed cell death or apoptosis (Wong et al, 1999). Further the tyrosine kinase activity induce MAP kinase pathway resulting in synthesis of cell cycle proteins.
The protein is a monomer and it forms a dimer when bound to the EGF. This is required for exhibition of functional activity. The three dimensional model of the same is represented in figure 4. There are 4 domains in the protein which are cysteine rich (2 domains) and Leucine rich (2 domains).
Figure 4: The three dimensional model of the epidermal growth factor receptor protein (obtained from http://swissmodel.expasy.org)
Mutations and Diseases Associated with the Protein
Studies have indicated that around 8 mutations are evident in the EFGR V1 gene which leads to lung cancer (Cotran et al, 2005). SNPs are noted at position 429, 609.The lung cells survive in a prolonged manner and exhibits uncontrolled growth leading to metastasis. The carcinoma evident in such types of mutation is adenocarcinoma in the lungs (Harris, Chung, & Coffey 2003). The other protein members include erb-2, erb-3 & erb-4.
Mouse Models
The gene is found in other species (refer table 1). The cladogram relation is shown in appendix. The mouse model which is available is Ratuus norvegicus. The phenotype includes poorly formed skin, with poor melanin formation.
Amplification Techniques for the cDNA segment
Polymerase Chain Reactions help to amplify a desired DNA sequence which might represent either the full genome or from the CDNA. PCR done on cDNA is called RT-PCR. The various primers and the additional oligonucleotide primers are constructed as shown in table 3, along with the desired set of conditions for annealing and GC content. Two methods were used to make the amplifications. In one method the genomic DNA was selected while in the other instance the mRNA based RT-PCR was deployed. The oligonucleotide primers base pairs with the desired sequence and Taq polymerase causes DNA polymerization. The annealing temperature, melting temperature and GC content are main determinants of the efficacy of the PCR technique.
Using 1- Gene based sequence positions
OLIGO start len tm gc% any_th 3’_th hairpin seq (selected conditions)
LEFT PRIMER 771 20 58.99 55.00 0.00 0.00 0.00 GCGCTACCTTGTCATTCAGG
RIGHT PRIMER 997 20 58.91 50.00 0.00 0.00 0.00 TATCAATGCAAGCCACGGTG
SEQUENCE SIZE: 1262
INCLUDED REGION SIZE: 1262
Using 1- Gene based sequence positions
ADDITIONAL OLIGOS
start len tm gc% any_th 3’_th hairpin seq (Selected Conditions)
1 LEFT PRIMER 386 20 58.92 50.00 0.00 0.00 0.00 CGCAGCATGTCAAGATCACA
RIGHT PRIMER 545 20 58.89 55.00 0.00 0.00 0.00 CCGTAGCTCCAGACATCACT
PRODUCT SIZE: 160, PAIR ANY_TH COMPL: 0.00, PAIR 3’_TH COMPL: 0.00
2 LEFT PRIMER 978 20 58.91 50.00 0.00 0.00 0.00 CACCGTGGCTTGCATTGATA
RIGHT PRIMER 1222 20 59.10 60.00 0.00 0.00 0.00 CCTGGTAGTGTGGGTCTCTG
PRODUCT SIZE: 245, PAIR ANY_TH COMPL: 0.00, PAI
Using 2-mRNA based sequence positions
OLIGO start len tm gc% any_th 3’_th hairpin seq (selected conditions)
INTERNAL_OLIGO 1057 20 59.97 70.00 13.71 4.42 37.52 GACCCCACAGGCGCCTTGAC
SEQUENCE SIZE: 1262
INCLUDED REGION SIZE: 1262
Using 2-mRNA based sequence positions
ADDITIONAL OLIGOS
start len tm gc% any_th 3’_th hairpin seq (selected conditions)
1 INTERNAL_OLIGO 1055 20 59.97 70.00 21.81 19.56 37.52 CAGACCCCACAGGCGCCTTG
2 INTERNAL_OLIGO 1220 20 60.04 65.00 0.34 0.00 31.52 AGGACCCCCACAGCACTGCA
3 INTERNAL_OLIGO 760 20 60.04 70.00 0.00 0.00 0.00 CGAGACCCCCAGCGCTACCT
4 INTERNAL_OLIGO 327 20 60.04 70.00 0.00 0.00 43.96 GGAGGACCGTCGCTTGGTGC
References
Aluru, Srinivas.(2006). Handbook of Computational Molecular Biology. Chapman & Hall/Crc.
Baxevanis, A.D. and Ouellette, B.F.F (2005). Bioinformatics: A Practical Guide to the Analysis of Genes and Proteins, third edition. Wiley
Cotran, Ramzi S.; Kumar, Vinay; Fausto, Nelson; Nelso Fausto; Robbins, Stanley L.; Abbas, Abul K. (2005). Robbins and Cotran pathologic basis of disease. St. Louis, Mo: Elsevier Saunders
Fallon JH, Seroogy KB, Loughlin SE, Morrison RS, Bradshaw RA, Knaver DJ, Cunningham DD (1984). “Epidermal growth factor immunoreactive material in the central nervous system: location and development”. Science 224 (4653), 1107–9
Hall, L.O. (2010). “Finding the right genes for disease and prognosis prediction.”.System Science and Engineering (ICSSE),2010 International Conference, 1–2
Herbst RS. (2004). “Review of epidermal growth factor receptor biology”. International Journal of Radiation Oncology, Biology, Physics 59 (2), 21–6
Hindorff, L.A. (2009). “Potential etiologic and functional implications of genome-wide association loci for human diseases and traits.”. Proc. Natl Acad. Sci. USA 106, 9362–9367
Harris RC, Chung E, Coffey RJ (2003). “EGF receptor ligands”. Experimental Cell Reseach 284 (1), 2–13
Moody, Glyn (2004). Digital Code of Life: How Bioinformatics is Revolutionizing Science, Medicine, and Business
Wong L, Deb TB, Thompson SA, Wells A, & Johnson GR (1999). “A differential requirement for the COOH-terminal region of the epidermal growth factor (EGF) receptor in amphiregulin and EGF mitogenic signaling”. J. Biol. Chem. 274 (13), 8900–9.
Appendix
Sequence 10
>Coursework 2; Sequence 10
tccggtgcgttcggcacggtgtataagggactctgaatcccagaaggtgagaaagttaaaattcccgtcgctatcaaggaattaagagaagcaacatctccgaaagccaacaaggaaatcctcgatgaagcctacgtgatggccagcgtggacaacccccacgtgtgccgcctgctgggcatctgcctcacctccaccgtgcagctcatcacgcagctcatgcccttcggctgcctcctggactatgtccgggaacacaaagacaatattggctcccagtacctgctcaactggtgtgtgcagatcgcaaagggcatgaactacttggaggaccgtcgcttggtgcaccgcgacctggcagccaggaacgtactggtgaaaacaccgcagcatgtcaagatcacagattttgggctggccaaactgctgggtgcggaagagaaagaataccatgcagaaggaggcaaagtgcctatcaagtggatggcattggaatcaattttacacagaatctatacccaccagagtgatgtctggagctacggggtgactgtttgggagttgatgacctttggatccaagccatatgacggaatccctgccagcgagatctcctccatcctggagaaaggagaacgcctccctcagccacccatatgtaccatcgatgtctacatgatcatggtcaagtgctggatgatagacgcagatagtcgcccaaagttccgtgagttgatcatcgaattctccaaaatggcccgagacccccagcgctaccttgtcattcagggggatgaaagaatgcatttgccaagtcctacagactccaacttctaccgtgccctgatggatgaagaagacatggacgacgtggtggatgccgacgagtacctcatcccacagcagggcttcttcagcagcccctccacgtcacggactcccctcctgagctctctgagtgcaaccagcaacaattccaccgtggcttgcattgatagaaatgggctgcaaagctgtcccatcaaggaagacagcttcttgcagcgatacagctcagaccccacaggcgccttgactgaggacagcatagacgacaccttcctcccagtgcctgaatacataaaccagtccgttcccaaaaggcccgctggctctgtgcagaatcctgtctatcacaatcagcctctgaaccccgcgcccagcagagacccacactaccaggacccccacagcactgcagtgggcaaccccgagtatctcaa
..
Protein names Identity
cDNA FLJ55514, highly similar to Epidermal growth factor receptor (EC 2.7.10.1)(Homo sapiens) 99.8%
Receptor protein-tyrosine kinase (Homo sapiens) 99.8%
Epidermal growth factor receptor (Homo sapiens) 99.8%
Epidermal growth factor receptor (Homo sapiens) 99.8%
Receptor protein-tyrosine kinase (Macaca fascicularis) 99.8%
Receptor protein-tyrosine kinase (Gorilla gorilla gorilla) 99.8%
Uncharacterized protein (Chlorocebus sabaeus) 99.8%
Uncharacterized protein (Pongo abelii) 99.8%
Cell growth inhibiting protein 40 (Homo sapiens) 99.8%
Epidermal growth factor receptor (Macaca mulatta) 99.8%
Epidermal growth factor receptor (Homo sapiens) 99.8%
Receptor protein-tyrosine kinase (Nomascus leucogenys) 99.5%
Cell proliferation-inducing protein 61 (Homo sapiens) 99.5%
Epidermal growth factor receptor (Pan troglodytes) 99.3%
cDNA FLJ76780, highly similar to Homo sapiens epidermal growth factor receptor (erythroblastic leukemia viral (v-erb-b) oncogene homolog, avian) (EGFR), transcript variant 1, mRNA (Homo sapiens) 99.3%
Uncharacterized protein (Papio anubis) 98.8%
Epidermal growth factor receptor isoform a (Callithrix jacchus) 98.6%
Epidermal growth factor receptor isoform a (Callithrix jacchus) 98.6%
Epidermal growth factor receptor (Castor fiber) 96.4%
Uncharacterized protein (Felis catus) 96.0%
Receptor protein-tyrosine kinase (Mustela putorius furo) 96.7%
Receptor protein-tyrosine kinase (Neovison vison) 96.7%
Uncharacterized protein (Mustela putorius furo) 96.7%
Receptor protein-tyrosine kinase (Canis lupus familiaris) 96.0%
Epidermal growth factor receptor (Tupaia chinensis) 96.7%
Receptor protein-tyrosine kinase (Equus caballus) 95.7%
Uncharacterized protein (Ictidomys tridecemlineatus) 96.2%
Receptor protein-tyrosine kinase (Equus caballus) 95.5%
Uncharacterized protein (Oryctolagus cuniculus) 94.5%
Receptor protein-tyrosine kinase (Loxodonta africana) 96.0%
Uncharacterized protein (Loxodonta africana) 96.0%
Uncharacterized protein (Otolemur garnettii) 95.0%
Epidermal growth factor receptor (Mus musculus) 95.0%
Epidermal growth factor receptor (Mus musculus) 94.8%
Uncharacterized protein (Cavia porcellus) 93.6%
Putative epidermal growth factor receptor (Desmodus rotundus) 95.0%
Epidermal growth factor receptor (Rattus norvegicus) 94.5%
Epidermal growth factor receptor (Rattus norvegicus) 94.5%
Epidermal growth factor receptor (Rattus norvegicus) 94.5%
Receptor protein-tyrosine kinase (Sus scrofa) 93.6%
Epidermal growth factor receptor, isoform CRA_b (Rattus norvegicus) 94.3%
Epidermal growth factor receptor (Sus scrofa) 93.6%
Uncharacterized protein (Ovis aries) 92.9%
Uncharacterized protein (Bos taurus) 92.9%
Receptor protein-tyrosine kinase (Bos mutus) 92.6%
Epidermal growth factor receptor (Bos taurus) 92.6%
Receptor protein-tyrosine kinase (Bos mutus grunniens) 92.1%
Uncharacterized protein (Ornithorhynchus anatinus) 91.2%
Receptor protein-tyrosine kinase (Cricetulus griseus) 92.1%
Epidermal growth factor receptor (Cricetulus griseus) 92.1%
Epidermal growth factor receptor (Cricetulus griseus) 92.1%
Uncharacterized protein (Callithrix jacchus) 92.4%
Uncharacterized protein (Monodelphis domestica) 89.8%
Receptor protein-tyrosine kinase (Sarcophilus harrisii) 89.8%
Receptor protein-tyrosine kinase (Pterocles gutturalis) 87.7%
Receptor protein-tyrosine kinase (Cariama cristata) 87.7%
Receptor protein-tyrosine kinase (Fulmarus glacialis) 87.5%
Receptor protein-tyrosine kinase (Manacus vitellinus) 87.5%
Receptor protein-tyrosine kinase (Phalacrocorax carbo) 87.5%
Receptor protein-tyrosine kinase (Corvus brachyrhynchos) 87.5%
Receptor protein-tyrosine kinase (Balearica regulorum gibberic..) 87.5%
Receptor protein-tyrosine kinase (Eurypyga helias) 87.5%
Receptor protein-tyrosine kinase (Gavia stellata) 87.5%
Receptor protein-tyrosine kinase (Phoenicopterus ruber ruber) 87.5%
Receptor protein-tyrosine kinase (Nipponia nippon) 87.5%
Receptor protein-tyrosine kinase (Phaethon lepturus) 87.5%
Epidermal growth factor receptor (Macaca mulatta) 94.5%
Uncharacterized protein (Ficedula albicollis) 87.2%
Receptor protein-tyrosine kinase (Tauraco erythrolophus) 87.2%
Receptor protein-tyrosine kinase (Mesitornis unicolor) 87.2%
Receptor protein-tyrosine kinase (Pelecanus crispus) 87.2%
Epidermal growth factor receptor (Macaca mulatta) 99.7%
EGFR protein (Homo sapiens) 99.7%
Epidermal growth factor receptor variant A (Homo sapiens) 99.7%
Receptor protein-tyrosine kinase (Buceros rhinoceros silvestris) 87.5%
Receptor protein-tyrosine kinase (Charadrius vociferus) 87.2%
Receptor protein-tyrosine kinase (Pygoscelis adeliae) 87.5%
Receptor protein-tyrosine kinase (Taeniopygia guttata) 87.2%
Receptor protein-tyrosine kinase (Calypte anna) 87.2%
Receptor protein-tyrosine kinase (Leptosomus discolor) 87.0%
Receptor protein-tyrosine kinase (Merops nubicus) 87.2%
Uncharacterized protein (Anas platyrhynchos) 87.2%
Receptor protein-tyrosine kinase (Anas platyrhynchos) 87.2%
Receptor protein-tyrosine kinase (Cuculus canorus) 87.0%
Receptor protein-tyrosine kinase (Aptenodytes forsteri) 87.0%
Receptor protein-tyrosine kinase (Meleagris gallopavo) 87.0%
Receptor protein-tyrosine kinase (Haliaeetus albicilla) 87.0%
Receptor protein-tyrosine kinase (Struthio camelus australis) 87.2%
Receptor protein-tyrosine kinase (Apaloderma vittatum) 87.0%
Uncharacterized protein (Pelodiscus sinensis) 86.3%
Receptor protein-tyrosine kinase (Meleagris gallopavo) 86.8%
Receptor protein-tyrosine kinase (Antrostomus carolinensis) 86.5%
Uncharacterized protein (Pelodiscus sinensis) 86.1%
Epidermal growth factor receptor (Gallus gallus) 86.5%
Epidermal growth factor receptor (Gallus gallus) 86.5%
Tyrosine-protein kinase transforming protein erbB (Avian leukosis virus) 86.5%
V-erbB protein (Avian rous-associated virus ..) 86.3%
Polyprotein (Avian rous-associated virus ..) 86.3%
Tyrosine-protein kinase transforming protein erbB (Avian erythroblastosis virus..) 86.1%
Receptor protein-tyrosine kinase (Picoides pubescens) 85.2%
Epidermal growth factor receptor (Fukomys damarensis) 92.1%
Receptor protein-tyrosine kinase (Chelonia mydas) 85.1%
Receptor protein-tyrosine kinase (Anolis carolinensis) 84.4%
Epidermal growth factor receptor (Tinamus guttatus) 84.6%
Uncharacterized protein (Camelus ferus) 81.2%
Tyrosine-protein kinase transforming protein erbB (Avian erythroblastosis virus..) 81.0%
Gag,v-erb-A,v-erb-B protein (Avian erythroblastosis virus) 80.8%
Receptor protein-tyrosine kinase (Myotis davidii) 86.3%
(ts34) v-erbB gene (Avian erythroblastosis virus) 80.8%
Epidermal growth factor receptor erbB1 (Notophthalmus viridescens) 79.1%
Uncharacterized protein (Xenopus tropicalis) 79.1%
Receptor protein-tyrosine kinase (Xenopus laevis) 78.9%
Uncharacterized protein (Lepisosteus oculatus) 73.6%
Putative uncharacterized protein EGFR (Homo sapiens) 100.0%
Receptor protein-tyrosine kinase (Callorhinchus milii) 73.5%
Uncharacterized protein (Oreochromis niloticus) 74.1%
Uncharacterized protein (Astyanax mexicanus) 76.7%
Epidermal growth factor receptor (Larimichthys crocea) 71.1%
Uncharacterized protein (Oryzias latipes) 76.4%
Uncharacterized protein (Poecilia formosa) 73.4%
Uncharacterized protein (Poecilia formosa) 73.4%
Uncharacterized protein (Gasterosteus aculeatus) 72.3%
Uncharacterized protein (Takifugu rubripes) 72.0%
Uncharacterized protein (Xiphophorus maculatus) 73.1%
Uncharacterized protein (Takifugu rubripes) 70.9%
Epidermal growth factor receptor (Danio rerio) 76.1%
Epidermal growth factor receptor (Danio rerio) 76.1%
Epidermal growth factor receptor (Danio rerio) 76.1%
Uncharacterized protein (Takifugu rubripes) 71.5%
Epidermal growth factor receptor (Xiphophorus xiphidium) 72.7%
Epidermal growth factor receptor (Heterocephalus glaber) 90.0%
Uncharacterized protein (Takifugu rubripes) 79.3%
Epidermal growth factor receptor (Pteropus alecto) 90.5%
Uncharacterized protein (Takifugu rubripes) 76.5%
Uncharacterized protein (Oryzias latipes) 74.7%
Receptor protein-tyrosine kinase (Felis catus) 99.0%
Uncharacterized protein (Tetraodon nigroviridis) 69.8%
Receptor protein-tyrosine kinase (Oncorhynchus mykiss) 72.7%
Uncharacterized protein (Callithrix jacchus) 89.6%
Uncharacterized protein (Takifugu rubripes) 81.0%
Uncharacterized protein (Oncorhynchus mykiss) 84.5%
Uncharacterized protein (Oncorhynchus mykiss) 68.8%
Receptor protein-tyrosine kinase (Scleropages formosus) 64.9%
Uncharacterized protein (Oreochromis niloticus) 66.2%
Receptor tyrosine-protein kinase erbB-2 (Chelonia mydas) 61.3%
Uncharacterized protein (Oncorhynchus mykiss) 66.0%
Receptor protein-tyrosine kinase (Anolis carolinensis) 60.8%
Receptor protein-tyrosine kinase (Cuculus canorus) 73.4%
Receptor tyrosine-protein kinase erbB-2-like protein (Crotalus adamanteus) 61.4%
Receptor tyrosine-protein kinase erbB-2-like protein (Crotalus horridus) 60.7%
Uncharacterized protein (Latimeria chalumnae) 60.1%
Uncharacterized protein (Ficedula albicollis) 61.8%
Uncharacterized protein (Ficedula albicollis) 61.8%
Uncharacterized protein (Oryctolagus cuniculus) 60.5%
Receptor protein-tyrosine kinase (Gallus gallus) 61.3%
Uncharacterized protein (Callithrix jacchus) 59.9%
Uncharacterized protein (Callithrix jacchus) 59.9%
Uncharacterized protein (Callithrix jacchus) 59.9%
Receptor tyrosine-protein kinase erbB-2 isoform a (Callithrix jacchus) 59.9%
Receptor tyrosine-protein kinase erbB-2 (Gallus gallus) 61.3%
Receptor tyrosine-protein kinase erbB-2 (Camelus ferus) 59.9%
Receptor protein-tyrosine kinase (Canis lupus familiaris) 59.7%
Uncharacterized protein (Ovis aries) 59.9%
Receptor protein-tyrosine kinase (Bos taurus) 60.1%
Receptor tyrosine-protein kinase erbB-2 (Canis lupus familiaris) 59.5%
V-erb-b2 erythroblastic leukemia viral oncogene-like protein 2 (Ursus americanus) 59.7%
Receptor protein-tyrosine kinase (Callorhinchus milii) 58.8%
Receptor tyrosine-protein kinase erbB-2 (Tupaia chinensis) 59.7%
Receptor protein-tyrosine kinase (Mustela putorius furo) 59.5%
ERBB2 (Tupaia chinensis) 59.7%
Receptor protein-tyrosine kinase (Loxodonta africana) 60.3%
Uncharacterized protein (Mustela putorius furo) 59.5%
Uncharacterized protein (Otolemur garnettii) 60.0%
Receptor protein-tyrosine kinase (Sus scrofa) 59.9%
Uncharacterized protein (Pan troglodytes) 60.7%
V-erb-b2 avian erythroblastic leukemia viral oncogene-like protein 2 (Sus scrofa domesticus) 59.9%
Receptor protein-tyrosine kinase (Felis catus) 59.7%
Uncharacterized protein (Ailuropoda melanoleuca) 58.0%
Uncharacterized protein (Felis catus) 59.7%
Uncharacterized protein (Felis catus) 59.7%
Erb2 (Felis catus) 59.7%
Epidermal growth factor receptor type 2 (Felis catus) 59.7%
Receptor protein-tyrosine kinase (Equus caballus) 58.0%
Receptor protein-tyrosine kinase (Ailuropoda melanoleuca) 59.5%
Receptor protein-tyrosine kinase (Ailuropoda melanoleuca) 59.5%
V-erb-b2 erythroblastic leukemia viral oncogene homolog 2 (Neovison vison) 59.2%
Receptor tyrosine-protein kinase erbB-2 (Rattus norvegicus) 60.3%
Uncharacterized protein (Ornithorhynchus anatinus) 56.7%
Receptor protein-tyrosine kinase (Neovison vison) 58.0%
Receptor tyrosine-protein kinase erbB-2 (Rattus norvegicus) 60.3%
Receptor protein-tyrosine kinase (Equus caballus) 60.3%
Receptor tyrosine-protein kinase erbB-2 (Rattus norvegicus) 60.3%
Receptor tyrosine-protein kinase erbB-2 (Rattus norvegicus) 60.3%
Neu protooncoprotein (Rattus norvegicus) 60.3%
Uncharacterized protein (Oryzias latipes) 63.7%
Receptor protein-tyrosine kinase (Meleagris gallopavo) 61.1%
Uncharacterized protein (Cavia porcellus) 60.3%
Uncharacterized protein (Ictidomys tridecemlineatus) 59.5%
Receptor protein-tyrosine kinase (Calypte anna) 58.6%
V-erb-b2 erythroblastic leukemia viral oncogene homolog 2, neuro/glioblastoma derived oncogene homolog (Avian) (Pan troglodytes) 59.9%
Receptor protein-tyrosine kinase (Pongo abelii) 59.5%
Putative receptor tyrosine-protein kinase erbb-4 (Desmodus rotundus) 56.5%
Uncharacterized protein (Callithrix jacchus) 57.6%
Ovarian receptor tyrosine kinase erbB4 precusor (Gallus gallus) 58.3%
Ovarian receptor tyrosine kinase erbB4 precusor (Gallus gallus) 58.3%
Isoform 3 of Receptor tyrosine-protein kinase erbB-2 (Homo sapiens) 59.7%
Isoform 2 of Receptor tyrosine-protein kinase erbB-2 (Homo sapiens) 59.7%
Uncharacterized protein (Oryzias latipes) 70.9%
Receptor tyrosine-protein kinase erbB-2 (Homo sapiens) 59.7%
Uncharacterized protein (Mustela putorius furo) 56.5%
Isoform 5 of Receptor tyrosine-protein kinase erbB-2 (Homo sapiens) 59.7%
Receptor tyrosine-protein kinase erbB-2 (Fukomys damarensis) 60.3%
Isoform 4 of Receptor tyrosine-protein kinase erbB-2 (Homo sapiens) 59.7%
Uncharacterized protein (Canis lupus familiaris) 56.5%
Uncharacterized protein (Nomascus leucogenys) 59.3%
Receptor protein-tyrosine kinase (Homo sapiens) 59.7%
Receptor tyrosine-protein kinase erbB-2 (Homo sapiens) 59.7%
Receptor protein-tyrosine kinase (Gorilla gorilla gorilla) 59.7%
Uncharacterized protein (Ailuropoda melanoleuca) 56.5%
Receptor tyrosine-protein kinase erbB-4 (Tyto alba) 58.0%
Receptor protein-tyrosine kinase (Equus caballus) 56.5%
Receptor protein-tyrosine kinase (Balearica regulorum gibberic..) 58.4%
Receptor protein-tyrosine kinase (Monodelphis domestica) 56.9%
Receptor protein-tyrosine kinase (Charadrius vociferus) 58.4%
Receptor protein-tyrosine kinase (Pygoscelis adeliae) 58.4%
Receptor protein-tyrosine kinase (Aptenodytes forsteri) 58.4%
Receptor tyrosine-protein kinase erbB-2 (Myotis brandtii) 60.1%
Uncharacterized protein (Ficedula albicollis) 59.3%
Receptor protein-tyrosine kinase (Macaca fascicularis) 59.2%
Uncharacterized protein (Chlorocebus sabaeus) 59.2%
Receptor protein-tyrosine kinase (Anas platyrhynchos) 58.1%
Receptor protein-tyrosine kinase (Gallus gallus) 58.1%
Uncharacterized protein (Loxodonta africana) 56.3%
Receptor protein-tyrosine kinase (Gorilla gorilla gorilla) 57.4%
Uncharacterized protein (Oryctolagus cuniculus) 56.5%
Uncharacterized protein (Macaca mulatta) 59.4%
Uncharacterized protein (Gasterosteus aculeatus) 62.0%
Uncharacterized protein (Tetraodon nigroviridis) 58.2%
Receptor protein-tyrosine kinase (Myotis lucifugus) 56.5%
Uncharacterized protein (Ovis aries) 56.1%
Receptor protein-tyrosine kinase (Mus musculus) 59.4%
Receptor protein-tyrosine kinase (Calypte anna) 79.7%
Uncharacterized protein (Papio anubis) 55.7%
Uncharacterized protein (Cavia porcellus) 56.1%
Receptor protein-tyrosine kinase (Petromyzon marinus) 78.5%
Receptor protein-tyrosine kinase (Tinamus guttatus) 75.2%
Uncharacterized protein (Danio rerio) 57.4%
Erbb2 protein (Mus musculus) 58.8%
B7Z2I3B7Z2I3_HUMAN – cDNA FLJ55514, highly similar to Epidermal growth factor receptor (EC 2.7.10.1) Homo sapiens (Human)E-value: 0.0
Score: 2212
Ident.: 99.8%
Positives : 99.8%
Query Length: 1262
Match Length: 1157
Query1 SGAFGTVYKGL*IPEGEKVKIPVAIKELREATSPKANKEILDEAYVMASVDNPHVCRLLG 60
SGAFGTVYKGL IPEGEKVKIPVAIKELREATSPKANKEILDEAYVMASVDNPHVCRLLG
B7Z2I3 B7Z2I3_HUMAN667 SGAFGTVYKGLWIPEGEKVKIPVAIKELREATSPKANKEILDEAYVMASVDNPHVCRLLG 726
Query61 ICLTSTVQLITQLMPFGCLLDYVREHKDNIGSQYLLNWCVQIAKGMNYLEDRRLVHRDLA 120
ICLTSTVQLITQLMPFGCLLDYVREHKDNIGSQYLLNWCVQIAKGMNYLEDRRLVHRDLA
B7Z2I3 B7Z2I3_HUMAN727 ICLTSTVQLITQLMPFGCLLDYVREHKDNIGSQYLLNWCVQIAKGMNYLEDRRLVHRDLA 786
Query121 ARNVLVKTPQHVKITDFGLAKLLGAEEKEYHAEGGKVPIKWMALESILHRIYTHQSDVWS 180
ARNVLVKTPQHVKITDFGLAKLLGAEEKEYHAEGGKVPIKWMALESILHRIYTHQSDVWS
B7Z2I3 B7Z2I3_HUMAN787 ARNVLVKTPQHVKITDFGLAKLLGAEEKEYHAEGGKVPIKWMALESILHRIYTHQSDVWS 846
Query181 YGVTVWELMTFGSKPYDGIPASEISSILEKGERLPQPPICTIDVYMIMVKCWMIDADSRP 240
YGVTVWELMTFGSKPYDGIPASEISSILEKGERLPQPPICTIDVYMIMVKCWMIDADSRP
B7Z2I3 B7Z2I3_HUMAN847 YGVTVWELMTFGSKPYDGIPASEISSILEKGERLPQPPICTIDVYMIMVKCWMIDADSRP 906
Query241 KFRELIIEFSKMARDPQRYLVIQGDERMHLPSPTDSNFYRALMDEEDMDDVVDADEYLIP 300
KFRELIIEFSKMARDPQRYLVIQGDERMHLPSPTDSNFYRALMDEEDMDDVVDADEYLIP
B7Z2I3 B7Z2I3_HUMAN907 KFRELIIEFSKMARDPQRYLVIQGDERMHLPSPTDSNFYRALMDEEDMDDVVDADEYLIP 966
Query301 QQGFFSSPSTSRTPLLSSLSATSNNSTVACIDRNGLQSCPIKEDSFLQRYSSDPTGALTE 360
QQGFFSSPSTSRTPLLSSLSATSNNSTVACIDRNGLQSCPIKEDSFLQRYSSDPTGALTE
B7Z2I3 B7Z2I3_HUMAN967 QQGFFSSPSTSRTPLLSSLSATSNNSTVACIDRNGLQSCPIKEDSFLQRYSSDPTGALTE 1026
Query361 DSIDDTFLPVPEYINQSVPKRPAGSVQNPVYHNQPLNPAPSRDPHYQDPHSTAVGNPEYL 420
DSIDDTFLPVPEYINQSVPKRPAGSVQNPVYHNQPLNPAPSRDPHYQDPHSTAVGNPEYL
B7Z2I3 B7Z2I3_HUMAN1027 DSIDDTFLPVPEYINQSVPKRPAGSVQNPVYHNQPLNPAPSRDPHYQDPHSTAVGNPEYL 1086
Table 1: Shows the closest match of the provided cDNA template with target protein
Genetic Locus
>ORF sequence | 95 aa
MYSGTGRKVSSMLSSVKAPVGSELYRCKKLSSLMGQLCSPFLSMQATVELLLVALRELRR 60
GVRDVEGLLKKPCCGMRYSSASTTSSMSSSSIRAR 95
The code shown is 5->3 (Complementary DNA chain)
>DNA seq 285
AGTTTGGCCA GCCCAAAATC TGTGATCTTG ACATGCTGCG GTGTTTTCAC CAGTACGTTC 60
CTGGCTGCCA GGTCGCGGTG CACCAAGCGA CGGTCCTCCA AGTAGTTCAT GCCCTTTGCG 120
ATCTGCACAC ACCAGTTGAG CAGGTACTGG GAGCCAATAT TGTCTTTGTG TTCCCGGACA 180
TAGTCCAGGA GGCAGCCGAA GGGCATGAGC TGCGTGATGA GCTGCACGGT GGAGGTGAGG 240
CAGATGCCCA GCAGGCGGCA CACGTGGGGG TTGTCCACGC TGGCC
5’3′ Frame 1S G A F G T V Y K G L Stop I P E G E K V K I P V A I K E L R E A T S P K A N K E I L D E A Y V Met A S V D N P H V C R L L G I C L T S T V Q L I T Q L Met P F G C L L D Y V R E H K D N I G S Q Y L L N W C V Q I A K G Met N Y L E D R R L V H R D L A A R N V L V K T P Q H V K I T D F G L A K L L G A E E K E Y H A E G G K V P I K W Met A L E S I L H R I Y T H Q S D V W S Y G V T V W E L Met T F G S K P Y D G I P A S E I S S I L E K G E R L P Q P P I C T I D V Y Met I Met V K C W Met I D A D S R P K F R E L I I E F S K Met A R D P Q R Y L V I Q G D E R Met H L P S P T D S N F Y R A L Met D E E D Met D D V V D A D E Y L I P Q Q G F F S S P S T S R T P L L S S L S A T S N N S T V A C I D R N G L Q S C P I K E D S F L Q R Y S S D P T G A L T E D S I D D T F L P V P E Y I N Q S V P K R P A G S V Q N P V Y H N Q P L N P A P S R D P H Y Q D P H S T A V G N P E Y L
5’3′ Frame 2P V R S A R C I R D S E S Q K V R K L K F P S L S R N Stop E K Q H L R K P T R K S S Met K P T Stop W P A W T T P T C A A C W A S A S P P P C S S S R S S C P S A A S W T MetS G N T K T I L A P S T C S T G V C R S Q R A Stop T T W R T V A W C T A T W Q P G T Y W Stop K H R S Met S R S Q I L G W P N C W V R K R K N T Met Q K E A K C L S S G W H W N Q F Y T E S I P T R V Met S G A T G Stop L F G S Stop Stop P L D P S H Met T E S L P A R S P P S W R K E N A S L S H P Y V P S Met S T Stop S W S S A G Stop Stop T Q I V A Q S S V S Stop S S N S P K W P E T P S A T L S F R G Met K E C I C Q V L Q T P T S T V P Stop W Met K K T W T T W W Met P T S T S S H S R A S S A A P P R H G L P S Stop A LStop V Q P A T I P P W L A L I E Met G C K A V P S R K T A S C S D T A Q T P Q A P Stop L R T A Stop T T P S S Q C L N T Stop T S P F P K G P L A L C R I L S I T I S L Stop T P R P A E T H T T R T P T A L Q W A T P S I S
5’3′ Frame 3R C V R H G V Stop G T L N P R R Stop E S Stop N S R R Y Q G I K R S N I S E S Q Q G N P R Stop S L R D G Q R G Q P P R V P P A G H L P H L H R A A H H A A H A L R L P P G L C P G T Q R Q Y W L P V P A Q L V C A D R K G H E L L G G P S L G A P R P G S Q E R T G E N T A A C Q D H R F W A G Q T A G C G R E R I P C R R R Q S A Y Q V D G I G I N F T Q N L Y P P E Stop C L E L R G D C L G V D D L W I Q A I Stop R N P C Q R D L L H P G E R R T P P S A T H Met Y H R C L H D H G Q V L D D R R R Stop S P K V P Stop V D H R I L Q N G P R P P A L P C H S G G Stop K N A F A K S Y R L Q L L P C P D G Stop R R H G R R G G C R R V P H P T A G L L Q Q P L H V T D S P P E L S E C N Q Q Q F H R G L H Stop StopK W A A K L S H Q G R Q L L A A I Q L R P H R R L D Stop G Q H R R H L P P S A Stop I H K P V R S Q K A R W L C A E S C L S Q S A S E P R A Q Q R P T L P G P P Q H C S G Q P R V S Q
3’5′ Frame 1L R Y S G L P T A V L W G S W Stop C G S L L G A G F R G Stop L Stop Stop T G F C T E P A G L L G T D W F Met Y S G T G R K V S S Met L S S V K A P V G S E L Y R C K K L S S LMet G Q L C S P F L S Met Q A T V E L L L V A L R E L R R G V R D V E G L L K K P C C G Met R Y S S A S T T S S Met S S S S I R A R Stop K L E S V G L G K C I L S S P Stop Met T R Stop R W G S R A I L E N S Met I N S R N F G R L S A S I I Q H L T Met I Met Stop T S Met V H Met G G Stop G R R S P F S R Met E E I S L A G I P S Y G L D P K V I N S Q T V T PStop L Q T S L W W V Stop I L C K I D S N A I H L I G T L P P S A W Y S F S S A P S S L A S P K S V I L T C C G V F T S T F L A A R S R C T K R R S S K Stop F Met P F A I C T H Q L S R Y W E P I L S L C S R T Stop S R R Q P K G Met S C V Met S C T V E V R Q Met P S R R H T W G L S T L A I T Stop A S S R I S L L A F G D V A S L N S L I A T G I L T F S P S G I Q S P L Y T V P N A P
3’5′ Frame 2Stop D T R G C P L Q C C G G P G S V G L C W A R G S E A D C D R Q D S A Q S Q R A F W E R T G L C I Q A L G G R C R L C C P Q S R R L W G L S C I A A R S C L P Stop W D S F A A H F Y Q C K P R W N C C W L H S E S S G G E S V T W R G C Stop R S P A V G Stop G T R R H P P R R P C L L H P S G H G R S W S L Stop D L A N A F F H P P E Stop Q G S A G G L G P F W R I R Stop S T H G T L G D Y L R L S S S T Stop P Stop S C R H R W Y I W V A E G G V L L S P G W R R S R W Q G F R H Met A W I Q R S S T P K Q S P R S S R H H S G G Y R F C V K L I P Met P S T Stop Stop A L C L L L H G I L S L P H P A V W P A Q N L Stop S Stop H A A V F S P V R S W L P G R G A P S D G P P S S S C P L R S A H T S StopA G T G S Q Y C L C V P G H S P G G S R R A Stop A A Stop Stop A A R W R Stop G R C P A G G T R G G C P R W P S R R L H R G F P C W L S E Met L L L L I P Stop Stop R R E FStop L S H L L G F R V P Y T P C R T H R
3’5′ Frame 3E I L G V A H C S A V G V L V V W V S A G R G V Q R L I V I D R I L H R A S G P F G N G L V Y V F R H W E E G V V Y A V L S Q G A C G V Stop A V S L Q E A V F L D G T A L Q P I S I N A S H G G I V A G C T Q R A Q E G S P Stop R G G A A E E A L L W D E V L V G I H H V V H V F F I H Q G T V E V G V C R T W Q Met H S F I P L N D K V A L G V S G H F G E F D D Q L T E L W A T I C V Y H P A L D H D H V D I D G T Y G W L R E A F S F L Q D G G D L A G R D S V I W L G S K G H Q L P N S H P V A P D I T L V G I D S V Stop N Stop F Q C H P L D R H F A S F C Met V F F L F R T Q Q F G Q P K I C D L D Met L R C F H Q Y V P G C Q V A V H Q A T V L Q V V H A L C D L H T P V E Q V L G A N I V F V F P D I V Q E A A E G H E L R D E L H G G G E A D A Q Q A A H V G V V H A G H H V G F I E D F L V G F R R C C F S Stop F L D S D G N F N F L T F W D S E S L I H R A E R T G
nic signaling”. J. Biol. Chem. 274 (13), 8900–9.
Subscribe and get the full version of the document name
Use our writing tools and essay examples to get your paper started AND finished.